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Abstract

The impact of data unbalance and asymmetry on the power spectral density of NRZ
and Biphase baseband modulations is presented. Previously reported results for this
problem assumed an incorrect model for the shape and number of elementary pulse
shapes that characterize an arbitrary random data stream and thus led to erroneous
computations of these power spectra. The purpose of this report is to provide the
correct analytical model and then use it to obtain theoretical power spectrum results
that are in full agreement with those obtained from computer simulation.
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A study of the average bit error probability performance of PCM/PM/NRZ
and PCM/PM/ Biphase2 receivers in nonideal channels has recently been
presented in several places in the literature [1-6]. Included in the analyses and
simulations were results obtained in the presence of two separate effects that
degrade the performance of the receiver, namely, unbalanced data (the unbalance
between the +1’s and -l’s in the data stream) and data asymmetry (the unequal rise
and fall times of the logic gating circuits producing data transitions at other than the
nominal time instants.) In [1-4] the bit error probability performance of the receivers
was evaluated taking into account the effect of the data unbalance and asymmetry
on the carrier phase demodulation process. Aside from this consideration, the
power spectral density (PSD) of these same modulations is of interest. The impact of
data unbalance and asymmetry on the PSD of NRZ and Biphase baseband
modulations was previously studied in [5,6]. It was concluded there that the
presence of these two effects in the transmitted data stream produces a line (discrete)
spectrum in its PSD as well as distortion of the continuous component of the PSD.
Recently, when attempting to compare the theoretical results for the discrete and
continuous components of the spectra obtained in [4,5] with computer simulation
results, a lack of agreement was discovered in both. Upon further investigation of
the theoretical model used in [5,6] to characterize the elementary pulses shapes (to be
defined shortly) and their probabilities that exist in unbalanced, asymmetric NRZ
and Biphase modulations, it was found that an error was committed and hence the
spectrum results obtained therein were incorrect. The speafics of the modeling
errors committed in [5,6] were first identified in [7] and will be discussed later on in
the report. The purpose of this report is to provide the correct analytical model for
analyzing the power spectra of unbalanced, asymmetric NRZ and Biphase
modulations and provide analytical and simulation results for these spectra that are
in agreement.

213iphase modulation is often referred to in the literature as Manchester code.
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&nbalancecl, Asymmetric NRZ Modulation

In [8, Chap. 21, a formulation is presented for calculating the power spectral
density of a generalized M-ary Markov data source which is characterized by one of
M signals (referred to as elementary signals)  transmitted in each T-see interval with
given a priori probabilities (called sfafimmry  probabilities) and given transition
probabilities, i.e., the probability that a particular elementary signal is transmitted
after the occurence of another elementary signal. In general, such a source, produces
a random pulse train that contains both discrete and continuous power spectrum
components. Since unbalanced, asymmetric binary baseband modulations such as
NRZ and Biphase can be modeled as above, the approach taken in [8, Chap. 2], is
well suited to compute their PSD. While this approach was indeed used in [5,6] to
evaluate these spectra, an error (to be described in more detail shortly) in the
underlying model used to characterize the elementary signals that appear in a
typical data stream and the stationary (steady-state) probabilities of these signals led
to incorrect discrete and continuous spectrum results. In this section, we present an
M-ary Markov data model for asymmetric, unbalanced NRZ modulation and then
proceed to compute its PSD using the formulation in [8, Chap. 2]. This formulation
was originally described in [9]. In the next section, we use a similar analytical model
and the same formulation to compute the PSD of asymmetric, unbalanced Biphase
modulation.

In this section, we used as was done in [5,6] the data asymmetry model
proposed in [10] which assumes that +1 bits are elongated by AT/2 (relative to their
nominal value of T see) when a negative-going data transition occurs and -1 bits are
shortened by the same amount when a positive-going transition occurs. The
parameter A is referred to as the relafive  fiucfioml usynzmefry. When no data
transitions occur, the bits maintain their nominal T-see value. The NRZ
waveform corresponding to a typical data sequence is illustrated in Fig. 1. The
generalized M-ary source model discussed in [8, Chap. 2] requires that one find the
set of so-called elementary signals which represent the possible waveforms that can
occur befzoeen adjacenf infeger mulfipks  of fhe bif fime T in a waveform generated by
an infinitely long data sequence. As such each of these elementary signals is
characterized by a T-see duration. This is where the signal model proposed in [5,6]
is in error, namely, the unbalanced, asymmetric NRZ source is characterized there
in terms of four elementary signals, two of which have durations unequal to the
nominal bit time duration 7. From observation of Fig. 1, we see that the correct
source model is given in terms of fhree  elementary signals each of T-see duration
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as described below:3

(1)
s3(t) = –A, o<f<~

= –s, (f)
where A is the signal amplitude which can be related to the signal power and

following the notation in [6], we let q~ A/2. Note that s,(t) occurs whenever the
data sequences (1,1) or (–1,1) occur. Similarly, Sz(t) occurs whenever a (1,–1)
sequence occurs, and finally S3(I)  occurs whenever a (–1,–1) occurs.

The Fourier transforms of each of the elementary signals in (1) are given by

[ ‘)S1 (f ) = ATe-jm ~m -

( )
Sz(f) = 2AqTe-jm ~>~ -$(f)

( )

sin @
S3(f) =  –ATe-jw  —

w
= –s, (f )

(2)

In order to compute the discrete spectrum component we must compute the
sfafiomuy probabilities of the three elementary signals, i.e., their probability of
occurrence in a waveform generated by an infinitely long data sequence. Here the
model assumed for the data source, i.e., the manner in which the +1’s and -l’s are
generated, is important. If we assume a purely random data source, where +1’s and
-l’s are independent generated with probabilities p and q = 1 – p, respectively, then
based on the sequence pairs that generate the three elementary signals as discussed
above, the stationary probabilities of these three signals are

p,=p2+pq=p2+p(l–p)

P2=Pq=P(1–  P) (3)
p3=q2=(l–p)*

In [5,6], the stationary probabilities were calculated using a mixture of a random p, q
data source (as assumed here) and a first order Markov source with transition

3Note that the elementary waveforms are described here in the interval O < t < T whereas in [7]

they are described symmetrically around the origin. Since the PSD is invariant to a time shift,
either characterization when correctly done will yield the same result.
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probability p,. For example, the probability of a (1,1) sequence, which generates the

elementary signal s,(1), was computed as p(l – p,) (the probability of a “+1” and no
transition in the data) rather than as p2 which is the joint probability of two
successive independent “+1’s”.

From [8, Eq. (2.53)], the discrete component of the PSD for an arbitrarY ‘-arY
source (here M = 3) is given by

s.(f)=+> gpisi(;]~(f -;)
n-+- 1—

(4)

which is a line spectrum with components at integer multiples of the data rate.
Using G?) and (3) in (4) results after Simplification  in

Sal(f) = A’(-1 + 2p+2p(l  - p)q)26(f)+Z42(2P(l  -P))2Tj2  : (si:;w-)’~(f-:)
a.-
Jl#o

(5)
or in terms of the signal energy E = AT and the transition probability of a random

pA sequence p, ~ 2P(1 – p), we have the normalized form

:02 ‘(si;:m]~(f-;)  (,)
Sd(f ) = 1 1 + Zp + p,q)a(f ) ++ > P, 1?
‘ -  # -E n- -

The continuous component of the I’SD is a bit more tedious to compute.
Here we need to first compute the set of equivalent elementary signals
s;(t), i=l,2,..., M generated by subtracting from each elementary signal the
statistical mean of the set, i.e.,

M

~(f)~si(t)–~pksk(t), i= L2,..., M (7)
k=l

From (2) and (3), the Fourier transforms of these equivalent elementary  signals can
be expressed in the form

s;(f) = a,lfi(~)+a,~F~(f)>  i =  1,2,...,  M (8)
where
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~(f) = ATe-Jw
( )

sin 7zfT

?fT

( 1
Fz ( f ) = AqTe’j@qT  ‘in ‘qT

q%/T

(9)

and

al, == 2(1 – p), a12 = –p,

~21 == –2p, an = 2 – p, (lo)

~31 . . –2p, a~z = –p,
We also need to speaf y the transition probability y matrix P = {pti } where Pti denotes

the probability that elementary signal Sk(t) is transmitted in a given transmission
interval after the occurrence of elementary signal Si(r) in the previous transmission
interval. For the problem at hand, the matrix P is given by

[1pqo
P = p o q (11)

Note the zeros in matrix of (11) which implies that certain elementary signals
cannot occur just after the occurrence of certain others. For example, because of the
assumed asymmetry model, S3 (t) cannot occur after sl (r).

To evaluate the continuous PSD component, we need to compute the
elements of P raised to integer powers. Multiplying P by itself gives

[1P P9 92

P* = P P9 92 qPY] (12)

P P9 q2
which is a matrix with three identical rows. From this, it is straightforward to
shown that

pq)* ~ p*
for all integer n. Defining as in [8]

(13)

pti(z) = ~p$)zm (14)
n=]

where z is a parameter and p}k’) is the ikth element of P“, then using the (11) - (13),
we arrive at
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P::)p,k(z)  = p~z + p:)~z” “ (p& – p,y)z + --
*=2

where we have also recognized that pj)
results in the form of a matrix gives

~
l – z

qzz + ~

(15)
l – z

= pti. Evaluating (15) and arranging the

2

–qzz+~

~
2

l – z
–pqz + E pqz + &

2
~ Pq
l – z

–pqz i- —
l – z

pqz + fi

(16)

Finally, from [8, Eq. (2~53)], the continuous ~on~ponent of the pSD in normalized
form is given by

s ( f )

{
‘-= *$PiIs~(f)~  +$Re ~~Pis;”(f)s;(f)Pti( e-’2mE ) }I-1 ,Gl ,4=1

where

pti(e-’2m)~pti(z)lZ=,-,,~,  i,k = 1,2,3

(17)

(18)

unbalanced, Asymmetric Biphase Modulat&

In this section, we again follow [5,6] by using the data asymmetry model
originally proposed in [10] which assumes that for a +1 bit the first half is elongated
by A7’/4 (relative to its nominal value of T/2 see) and for a -1 bit the first half is
shortened by the same amount. When a data transition follows, the second half of
the bit retains its nominal T/2 sec value. When no data transition occurs, the
second half of the bit adjusts itself so that the total bit maintains its nominal T sec
value. A biphase waveform for a typical data sequence is illustrated in Fig. 2. Based
on this waveform, we see that once again there are three elementary signals each of
of T-see duration as described below:



{

A, osf<(2q+l)T/2
s, (f) =

- A ,  (2q+l)T/2<r<T

{

–A, ()<f<T/2
%(f) =  ~, TJ2<t<T

(19)

[

A, o<t<qT

S3 (t)= –A, qT<t<T/2

A, T/2<t<T
where A again the signal amplitude which can be related to the signal power and

following the notation in [6], we let q~A/4. Note that as in the NRZ case, Sl(l)
occurs whenever the data sequences (1, 1) or (– 1, 1) occur. Similarly, S2 (r) occurs
whenever a (1, –1) sequence occurs, and finally SJ (t) occurs whenever a (– L – 1)
occurs.

The Fourier transforms of each of the elementary signals in (1) are given by

()$(f) = 2A~Te-J*(l+~)T sin @~T -  s2(f)nfqT

S2( f ) = – jATe-jw
(si$7~2)

( )
Sj(f) = 2A qTe-J@qT  ‘i>~~T + S2 (f )

(20)

Since the data sequence pairs that generate the stationary signals of (19) are
identical to those that generate the corresponding NRZ stationary signals, then the
stationary probabilities are once again given by (3). Thus, using (3) and (20) in (4),
the discrete component of the PSD is after considerable simplification given by

Sal(f) = 4A2(l-p+p2~q2c3(f)  +4A2(l-p+p2)2q2 ~ [si:;~]d(f -;)
n.-
11*0
n Cval

[ (1
2

+A2 ~ 4(1–3p+p2)2q2  ~m: –4(1–3P+P2)q
(+)(@)(si:;~)m.-

n odd

‘(:F2p’2]’(f-3

(21)
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or in terms of the signal energy E = A2T

s,(f) = 1——
“=_(si%w-;)

~4(1-P+  P’yn26(f)++4(l  -P+ P2)2q2  ~
E II*O

n eva

22 ‘(w$+qp+p’)~+1$’ [4(1 -3P+P)q [+)(1--2P)(-)

+(g(l-2P)’]a(f-:)

,. -,- . \ .,

(22)

For no data symmetry, i.e., q = O, (22) reduces to

(23)M-Q = +(1  - 2P)’n~(-g~(f  -:)
E

n dd

which agrees with [8. Eq. (2.67)].

It is also straightforward to show that the Fourier transforms of the
equivalent elementary signals defined in (7) are also given in a form similar to (8),
namely,

S~(f ) =  ai~~(f  ) +  ai2F2(f  ) +  ai’3F3(f”  i = 1’2’”. ”’M

where

~(f) = jATe-~m
( )

sin2nJT12
@T/2

()sin nfqTF2(f) = AqTe-j@(l+dT  c
nfqT

( )

sin zfqT
~ ’ ( f ) .  Aq7e-jtioT —

nfqT

and

a~~ ‘: 2(1 – p), a,* = 2(1 – p), a,~ = –2.(1 – p)2

a2, = – 2 P ,  CZ,2 = –2P% a23 = –2(1 – P)2

a31 == --2p, a32 = -2p, a33 = 2P(2 - p)

(24)

(25)

(26)
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The transition probability matrix P = {pti ] is identical to (11), and thus the formula
for the continuous spectrum as given by (17) still applies.

~umerical Evaluations and Simulation Resl&

Illustrated in Figs. 3 and 4 are evaluations of the analytical PSD results for NRZ and
Biphase modulations as given by the combinations of (5), (17) and (22), (17),
respectively. Also, shown are computer simulation results obtained for the same
unbalance and asymmetry parameter values. In particular, for the NRZ
simulations, a sampling rate of 64 Hz and a bit rate of 1 Hz are maintained so that
there are 64 samples per bit in each bit duration. Moreover, the ~ size, p, and T?
were set to 8192 points, 0.55 and 4.7’70,  respectively. For the Biphase simulations, on
the other hand, all the parameter values were kept the same as the NRZ case except
that the sampling rate and FFT size were increased to 128 HZ (providing 64 =rnples
per half bit duration) and 16384 points, respectively. Hence, the resolution
bandwidth for the continuous NRZ and Biphase PSD are 64/8192 and 128/16384,
respectively. The continuous PSD for the analytictd results are given at a resolution
bandwidth of 1 Hz. In order to compare the analytical and simulation continuous
J?SD at the same resolution, the analytical PSDS were adjusted in Figs. 3 and 4 so that
they have the same resolution bandwidth as the simulation. Note that the discrete
components are independent of the resolution bandwidth. For both NRZ and
Biphase simulations, 100 FFTs were averaged in order to decrease the noise due to
the data sequence. As can be seen, the analytical and simulation results are in
excellent agreement.

This paper is dedicated to the memory of Dennis F. Bishop, a co-author of this paper,
who recently deceased unexpectedly.
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